跳转至

电路方程 | 二阶线性时不变电路方程列写及五要素法总结

列写方法

正规列写(用矩阵参量+端口定义写);用基尔霍夫定律列写够两个方程

列写二阶微分方程

对于一个未知量,可以列写出一个二微分方程如下:

\(\frac{d^{2}}{d t^{2}} x+a \frac{d}{d t} x+b x=s_{x}\)

\(\frac{d^{2}}{d t^{2}} x+2 \xi \omega_{0} \frac{d}{d t} x+\omega_{0}^{2} x=s_{x}\)

其中\(\omega_0\)是自由振荡频率,\(\xi\)是阻尼系数

\(a=2\xi\omega_0,\ b=\omega_0^2;\ \omega_0=\sqrt{b},\ \xi=\frac{a}{2\sqrt{b}}\)

传递函数

\(\frac{\dot{X}}{\dot{S}}=\frac{\dot{S}_ {X} / \dot{S}}{s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}},\ s=j\omega\)

  • 典型二阶低通:\(H_{C}(s)=\frac{\dot{V}_ {C}}{\dot{V}_ {S}}=\frac{\omega_{0}^{2}}{s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}}\)
  • 典型二阶带通:\(H_{R}(s)=\frac{\dot{V}_ {R}}{\dot{V}_ {S}}=\frac{2 \xi \omega_{0} s}{s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}}\)
  • 典型二阶高通:\(H_{L}(s)=\frac{\dot{V}_ {L}}{\dot{V}_ {S}}=\frac{s^{2}}{s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}}\)

解的形态

特征方程:\(\lambda^{2}+2 \xi \omega_{0} \lambda+\omega_{0}^{2}=0\)

  • \(\xi=0\)无阻尼,理想正弦振荡
  • \(0<\xi<1\)欠阻尼,特征方程有两个共轭复根(左半平面)\(\lambda_{1,2}=\left(-\xi \pm j \sqrt{1-\xi^{2}}\right) \omega_{0}\),幅度指数衰减的正弦振荡
  • \(\xi=1\)临界阻尼,特征方程有两个负实重根,
  • \(\xi>1\)过阻尼,特征方程有两个负实根\(\lambda_{1,2}=\left(-\xi \pm \sqrt{\xi^{2}-1}\right) \omega_{0}\),指数衰减

求解方法:待定系数法

\(x(t)=x_{\infty}(t)+\left\{\begin{array}{lr}A e^{\lambda_{1} t}+B e^{\lambda_{2} t} & \xi>1 \\ A e^{-\omega_{0} t}+B t e^{-\omega_{0} t} & \xi=1 \\ e^{-\xi \omega_{0} t}\left(A \cos \sqrt{1-\xi^{2}} \omega_{0} t+B \sin \sqrt{1-\xi^{2}} \omega_{0} t\right) & 0<\xi<1\end{array}\right.\)

其中:\(\lambda_{1,2}=\left(-\xi \pm \sqrt{1-\xi^{2}}\right) \omega_{0}\);A、B为待定系数,由电路初始状态\(x(0^+)\ \frac{d}{dt}x(0^+)\)决定

求解方法:五要素法

三要素:稳态响应\(x_\infty(t)\)、阻尼系数\(\xi\)和自由振荡频率\(\omega_0\)、初值和微分初值\(x(0^+)\ \frac{d}{dt}x(0^+)\)

稳态响应

使用向量法求解。直流时利用电容电感高频低频特性求解。

阻尼系数和自由振荡频率

特殊:RLC串联与GCL并联

自由振荡频率均为\(\omega_0=\frac{1}{\sqrt{LC}}\)

阻尼系数:RLC串联\(\xi=\frac{R}{2Z_0}=\frac{R}{2\sqrt{\frac{L}{C}}}\),RCL并联\(\xi=\frac{G}{2Y_0}=\frac{1}{2R\sqrt{\frac{C}{L}}}\)

一般:从传递函数推导

\(H(j \omega) \stackrel{j \omega \rightarrow s}{=} \frac{? ? ?}{s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}}\)

将分母中\(s^{2}\)的系数归一化,然后观察一次项和零次项的系数,得到\(\xi\ \omega_0\)

一般:从二阶微分方程推导

\(\frac{d^{2}}{d t^{2}} x+a \frac{d}{d t} x+b x=s_{x}\)

\(\frac{d^{2}}{d t^{2}} x+2 \xi \omega_{0} \frac{d}{d t} x+\omega_{0}^{2} x=s_{x}\)

\(a=2\xi\omega_0,\ b=\omega_0^2\Longrightarrow\omega_0=\sqrt{b},\ \xi=\frac{a}{2\sqrt{b}}\)

写结果

\(0<\xi<1\)

复杂:\(x(t)=x_{\infty}(t)+\left(X_{0}-X_{\infty 0}\right) e^{-\xi \omega_{0} t} \cos \sqrt{1-\xi^{2}} \omega_{0} t+\left(\frac{\dot{X}_ {0}-\dot{X}_ {\infty 0}}{\xi \omega_{0}}+X_{0}-X_{\infty 0}\right) \frac{\xi}{\sqrt{1-\xi^{2}}} e^{-\xi \omega_{0} t} \sin \sqrt{1-\xi^{2}} \omega_{0} t\)

\(x(t)=x_{\infty}(t)+ e^{-\xi \omega_{0} t} (A\cos \sqrt{1-\xi^{2}} \omega_{0} t+B \sin \sqrt{1-\xi^{2}} \omega_{0} t)\)

\(A=X_{0}-X_{\infty 0}\)

\(B=\left(\frac{\dot{X}_ {0}-\dot{X}_ {\infty 0}}{\xi \omega_{0}}+X_{0}-X_{\infty 0}\right) \frac{\xi}{\sqrt{1-\xi^{2}}}\)

\(\xi=1\)

直接带入\(\xi=1\)得到:

复杂:\(x(t)=x_{\infty}(t)+\left(X_{0}-X_{\infty 0}\right) e^{-\omega_{0} t}+\left(\frac{\dot{X}_ {0}-\dot{X}_ {\infty 0}}{\omega_{0}}+X_{0}-X_{\infty 0}\right) \omega_{0} t e^{-\omega_{0} t}\)

\(x(t)=x_{\infty}(t)+e^{-\omega_{0} t} \left [\left(X_{0}-X_{\infty 0}\right) +\left(\frac{\dot{X}_{0}-\dot{X}_{\infty 0}}{\omega_{0}}+X_{0}-X_{\infty 0}\right) \omega_{0} t \right]\)

\(\xi>1\)

将欠阻尼\(0<\xi<1\)情况中的\(\sqrt{1-\xi^{2}}\)换成\(\sqrt{\xi^{2}-1}\)\(\cos\ \sin\)换成\(\cosh\ \sinh\)

\(x(t)=x_{\infty}(t)+ e^{-\xi \omega_{0} t} (A\cosh \sqrt{\xi^{2}-1} \omega_{0} t+B \sinh \sqrt{\xi^{2}-1} \omega_{0} t)\)

\(x(t)=x_{\infty}(t)+\left(X_{0}-X_{\infty 0}\right) e^{-\omega_{0} t}+\left(\frac{\dot{X}_ {0}-\dot{X}_ {\infty 0}}{\omega_{0}}+X_{0}-X_{\infty 0}\right) \omega_{0} t e^{-\omega_{0} t}\)

复杂:\(x(t)=x_{\infty}(t)+\left(X_{0}-X_{\infty 0}\right) e^{-\xi \omega_{0} t} \cosh \sqrt{\xi^{2}-1} \omega_{0} t+\left(\frac{\dot{X}_ {0}-\dot{X}_ {\infty 0}}{\xi \omega_{0}}+X_{0}-X_{\infty 0}\right) \frac{\xi}{\sqrt{\xi^{2}-1}} e^{-\xi \omega_{0} t} \sinh \sqrt{\xi^{2}-1} \omega_{0} t\)

过阻尼:最后还需化简为两个指数衰减函数叠加的效果

得到:

\(x(t)=x_{\infty}(t)+\frac{A+B}{2} e^{\lambda_{1} t}+\frac{A-B}{2} e^{\lambda_{2} t}\)

其中:\(\lambda_{1,2}=\left(-\xi \pm \sqrt{1-\xi^{2}}\right) \omega_{0}\)

  • \(\sinh x=\frac{e^{x}-e^{-x}}{2}\)
  • \(\cosh x=\frac{e^{x}+e^{-x}}{2}\)
  • \(\sin x=\frac{e^{j x}-e^{-j x}}{2 j}\)
  • \(\cos x=\frac{e^{j x}+e^{-j x}}{2}\)

总结

稳态响应

使用向量法求解。直流时利用电容电感高频低频特性求解。

阻尼系数和自由振荡频率

特殊:RLC串联与GCL并联

自由振荡频率均为\(\omega_0=\frac{1}{\sqrt{LC}}\)

阻尼系数:RLC串联\(\xi=\frac{R}{2Z_0}=\frac{R}{2\sqrt{\frac{L}{C}}}\),RCL并联\(\xi=\frac{G}{2Y_0}=\frac{1}{2R\sqrt{\frac{C}{L}}}\)

一般:从传递函数推导

\(H(j \omega) \stackrel{j \omega \rightarrow s}{=} \frac{? ? ?}{s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}}\)

将分母中\(s^{2}\)的系数归一化,然后观察一次项和零次项的系数,得到\(\xi\ \omega_0\)

\(0<\xi<1\)

\(x(t)=x_{\infty}(t)+ e^{-\xi \omega_{0} t} (A\cos \sqrt{1-\xi^{2}} \omega_{0} t+B \sin \sqrt{1-\xi^{2}} \omega_{0} t)\)

\(x(t)=x_{\infty}(t)+ e^{-\xi \omega_{0} t} \sqrt{A^2+B^2} \sin \left(\sqrt{1-\xi^{2}} \omega_{0} t+\arctan\frac{A}{B}\right)\)

其中:\(A=X_{0}-X_{\infty 0},\ B=\left(\frac{\dot{X}_ {0}-\dot{X}_ {\infty 0}}{\xi \omega_{0}}+X_{0}-X_{\infty 0}\right) \frac{\xi}{\sqrt{1-\xi^{2}}}\)

\(\xi=1\)

\(x(t)=x_{\infty}(t)+e^{-\omega_{0} t} \left [\left(X_{0}-X_{\infty 0}\right) +\left(\frac{\dot{X}_ {0}-\dot{X}_ {\infty 0}}{\omega_{0}}+X_{0}-X_{\infty 0}\right) \omega_{0} t \right]\)

\(\xi>1\)

\(x(t)=x_{\infty}(t)+\frac{A+B}{2} e^{\lambda_{1} t}+\frac{A-B}{2} e^{\lambda_{2} t}\)

其中:\(\lambda_{1,2}=\left(-\xi \pm \sqrt{\xi^{2}-1}\right) \omega_{0}\)